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There is a large variety of turbulence models available. These

models include direct numerical simulation, large eddy simulation,

Reynolds stress/flux model, zero equation model, one equation model,

two equation k-_ model, multiple-scale model, etc. Each turbulence

model contains different physical assumptions and requirements. The

natures of turbulence are randomness, irregularity, diffusivity and

dissipation. In this study, the capabilities of the turbulence

models, including physical strength, weakness, limitations, as well

as numerical and computational considerations, have been reviewed.

Recommendations are made for the potential application of a

turbulence model in thrust chamber and performance prediction

programs. In this study, the full Reynolds stress model is

recommended. In a workshop, specifically called for the assessment

of turbulence models for application in liquid rocket thrust

chambers, most of the experts present were also in favor of the

recommendation of the Reynolds stress model.

k_1
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I. Introduction

Turbulence consists of random velocity fluctuations, so in

principle, it must be treated with statistical methods. Turbulent

momentum fluxes and turbulent diffusion fluxes are usually much

greater than the mean molecular length scale in the turbulent regime.

However, the turbulent length scale of the excited modes still remains

within the band of computationally resolved grids (either in the

physical or spectral domain). This restriction imposes a severe

limitation on the development of the direct numerical simulation

method representing turbulent flows even with the advancement of

present day supercomputer technology, in addition to the

consideration of the mathematical description of reactive flow

transport due to the randomness in the fields of velocity and

thermochemical fluctuations (Givi, 1989; 1990). In other words,

assuming that the direct computation of the usual thermochemical

balance equations can be carried out with the help of much better

supercomputers, it is still impossible in practice to accomplish the

computation of every realization of this ensemble of flow fields, even

if we are satisfied simply with a brute numerical method (Borghi,

1988).

The nature of turbulence covers a wide spectrum of turbulent

energy transports in which turbulent energy production is associated

with smaller wave numbers; while turbulent energy dissipation is

attached to larger wave numbers. In other words, turbulence consists

of fluctuations of motions varying continuously with a spectrum of
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length and time scales. It is obvious that any turbulence closure

model with a single length scale can not properly cover the transition

of turbulent energy from the production end to the dissipation end.

Thermochemical and dynamical flow fields of liquid rocket thrust

chambers are highly irregular and random in nature. Proper selection

of the best turbulence model is the key to understanding the

characterisitics of reacting flow fields.

Turbulence models available include model-free simulations

(including large eddy simulation), which is a direct numerical

simulation of thermochemical flow fields, and turbulence closure

models which apply Favre and Reynolds averages on flow fields with

random fluctuations. Turbulence closure models can be further

divided into the models which do and do not adopt the concept of

Boussinesq's expression. By adopting the concept of Boussinesg's

expression, Reynold stress and diffusion fluxes become eddy viscosity

and eddy diffusion fluxes repectively, which assume that the flow

fields are in the form of isotropic turbulence. This approach has

produced formulations which are known as: zero equation, one

equation, two equation (including k-_ model), and multi-scale

turbulence models. Reynolds stress/flux models were developed by

the direct derivation of Reynolds stress/diffusion fluxes from the

mean value balance equations of continuity, momentum, energy and

species concentration, instead of using eddy viscosity/eddy

diffusion flux concepts from Boussinesq's expression. Reynolds

stress/flux models also include algebraic stress/flux and multi-

scale turbulence.

3
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With this large variety of turbulence models available, the

present report discusses the advantages and disadvantages of applying

these models in the reacting flow calculation, in particular the

suitability for random flow field computations within a liquid rocket

thrust chamber.

Please note that some text in this report is repetitive for the

sole purpose of convenience to the reader and to emphasize the

importance of the topic in question.
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If. Formulations of Turbulent Flows in Beactina Fluids

It is now common to consider a turbulent flow as an ensemble of

random flow fields. This includes the following considerations:

(1) each of these fields does satisfy the classical thermodynamical

balance equations with a particular set of initial and boundary

conditions; (2) each field is different due to the differences in

initial and boundary conditions; and (3) each flow can be very

different because the sensitivity to boundary conditions is quite

large. This Turbulent _eaime occurs very often when a characteristic

Reynolds number (a ratio of convective force to viscous force) is

large enough. Other types of instabilities leading to Turbulence

which are characterized by other numbers could occur, especially for

reacting flows where highly non-linear terms appear in the equations.

Assuming that the thermochemical balance equations are valid, it

is still impossible to compute these flow fields even if we settle for

a brute numerical method (Borghi, 1988). The time scales and length

scales, that we know to exist within the turbulent regime of reacting

flows, are so small with respect to the time or length scales of

interest that we would need an incredibly large computer memory

capacity and an enormous amount of computer time. In addition the

computation of just one or two realizations would be of no interest,

and we would not be able to perform computer experiments with the same

initial and boundary conditions. Indeed, only statistical

quantities are of practical meaning in order to describe the

randomness within the flow. In other words, we first need mean
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values, then variance and correlations, and also probability density

functions.

The method of approach due to Reynolds just described, has been

applied for cases of non-reacting turbulent flows as early as 1890.

Mean values for the components of the fluid velocity, the pressure or

the concentration of diffusing species, and also the variance and

correlations of the velocity fluctuations and other flow parameters

have been defined mathematically as well as experimentally (Tennekes

and Lumley, 1972).

Due to the variations and fluctuations of the fluid density which

are more likely to occur in reacting flows with large temperature

gradients, it is now common in turbulent combustion studies to change

the classical definition a little. It appears that the use of mean

values, weighted by the density p, is more appropriate to handle fluid

flows with a nature of randomness, irregularity, diffusivity and

dissipation.

Let us consider a reacting flow with a velocity component in

direction, u_; density, p; pressure, P; temperature, T; enthalpy, h;

viscous stress tensor along = and B directions, T=B; external force,

such as gravitational acceleration in = direction, g=; heat flux in

direction, q_; and mass fraction of species s, Y.. The four governing

equations of continuity, momentum, energy, and species can be

expressed as follows:
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Continuity Equation:

8p 8

-- +-- (pua) = 0

8t 8x a

= i, 2, 3

Momentum Equation:

a 8 8P

-- (pua) + -- (pu=us) = Pga

8t 8x B 8x_

@7a B
+ --

8x B

Energy Equation:

-- p h - - + - uBu B + -- pu B
%t p 2 8x B

+ - uBu B = pusg s (_aBua)
2 8x B

p
h - --

P

8qB

8x B

Species Equation:

% 8 8

-- (pY,) + -- (pY,uS) =
8t 8x B 8x B

(pYsUsB) + W s

(2-1)

(2-2)

(2-3)

(2-4)

where u,B is the diffusion velocity of species s in B direction.

In these expressions, viscous stress tensor, TaB; stress tensor,

TaB; and heat flux, qa, can be shown in the following forms:

f u_=+ 2 f ukl
T=s _axs axaJ - _ _ _,ax--"_/ aaB

(2-5)

nab = PSaB - _aB (2-6)

8T

qa = -kth -- + P _(Yshsu,a ) + qa
ax a

(2-7)

D
where qa represents the sum of the Dufour heat flux and radiative

heat flux; kth, the thermal conductivity; and W$, the chemical

reaction rate of species s.
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To obtain mean values of the thermochemical balance equation,

density weighted values (or Favre mean values) are used for velocity

components (ua), temperature (T), mass fraction (Ys), and enthalpy

(h), while the conventional mean values (or Reynolds mean values) are

kept for pressure (P) and density (p).

The conventional mean values are defined as

A = A + A' (2-8)

where () is the conventional mean value; and ()', the corresponding

value for fluctuation. The density weighted mean values are defined

as

A " A + A''

1-J
where () is the density

corresponding value of

weighted mean

fluctuation.

value;

Detailed

(2-8)

and () ' ", the

mathematical

expressions for both conventional and density weight mean values are

discussed in Appendix A.

The mean value balance equations for continuity, momentum,

energy, and species concentration can be shown as follows:

Continuity Equation:

m

8p 8 _.,_.,
-- + -- (pu_) - 0
at 8x=

Momentum Equation:

8 8

%t ax B

- pu u )

a

+ -- (To_.6
axs

(2-9)

(2-10)

k_/

8
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Energy Equation:

a [I ' II-- F%- _.- II II
p + -- U_U_ + -- U_U_

at 2 2 axa

+ -- UmU a

2

-- _-ll --_/

+_ um_a.I;..iiJ + pUa_ + pUaUBU B2

I _ l aT

+- puauBu B -- = pu=g_
2 @t

-- _ aq
11 i II a

+ _=BuB + Tasu B )

ax a

Species Equation:

a

+ -- (TaBus +

8x a

(2-11)

-- (pY,) +- (pY,u a + _yJ' .sUa )

8t 8X a

(pYsus=
8Xa

N

+ 7y it iJ"sUsa ) + W s (2-12)

where Usa is the diffusion velocity of species s in a direction.

In these manipulations, the following relations have been used:

Ta B = TaB + taB' (2-13)

qa = qa + qa' (2-14)

-- __ +__ + _ -- +--

_Sx B Oxa/ _%x_ Ox a

1l II

+ _e __ + __ - -- _ -- + U. --

_ax B _x a 3 ax k ax_

)+ _'-- 8aB
%x k

(2-15)

(2-16)
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_ax s _x_/ 3 Lax k)

kth = k,h + k,'h
N

- [" -- + kth -- + kth P sh, u
q_ - kt h 8X= 8X= 8X= )

V h It- I/ + . _--Jl_ _ ..li._ /I_ii ol --D
+ --,.-sus= XsnsUs_ + Us=Xsn s + Ys_sus= + q_

8T

q_' =- kth- + pE (hsYsus_

8x_ s

+ YshsUse + us=Ysh s)

(2-19)

f
D

+ q_ (2-20)

For the purpose of numerically solving turbulent reacting flows,

one has to solve the mean value balance equations of continuity,

momentum, energy, and species concentration, shown in Equations (2-9)

to (2-12), in conjunction with the mean value equation of state

P = pRT (2-21)

Careful examination of Equations (2-9) to (2-12) indicate that

" _Iterms whichu_ # _ and uaturbulent diffusion fluxes contain ua , u= Ys,

are usually much larger than the mean molecular length and time scale

in the turbulent regime, and also involve correlations between

fluctuations, and certainly not the mean values only (see Appendix for

description). Unless turbulent diffusion fluxes are well defined,

it is very difficult to obtain a closed form solution numerically. In

other words, the study of turbulence becomes a closure problem in

which the modeling of turbulent diffusion fluxes must be pre-

determined before one can solve the turbulent reacting flow problem

numerically.

i0
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III. Time Scale and Lenuth Scale of Turbulence

The mean balance equations of continuity, momentum, energy and

species, shown in Equations (2-9), (2-10), (2-11) and (2-12),

respectively, can not be used directly for solving turbulent reacting

flow problems. These equations involve new quantities of the

turbulent Reynolds stress/diffusion fluxes, such as uauB, u_Y s and

u_l=, which are usually much greater than the mean molecular scale in_ne

the turbulent regime, and also correlations between fluctuations

which are not mean values only.

The modeling of the turbulent diffusion fluxes generally follow

Boussinesq's expression resulting in the following

assumption:

[; 1;I Ii

- P u_UB = _t -- + -- - --_B + _t

_ax B 8x=,, 3 ax k)

U. II-- Ua.X S "

Sc t 8x=

Ltt a_J ,3t
-- 7 Ua.N --

Pr t %x=

closure

(3-1)

(3-2)

(3-3)

= 1/2 UaUa11,I is the turbulent kinetic energy; _t , the eddywhere

viscosity; Sct, the turbulent Schmidt number; and Prt, the turbulent

Prandtl number. It is noted that _t is not a property of the fluid.

In fact, experiments show in particular that Sc t and Pr t are

independent of the nature of the species, and therefore _t has to be a

property of the turbulent flow. In other words, _t does depend on a

length scale and a time scale of the turbulence. This can be shown as

Ii
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follows with modification from Equation (3-1):

• # 11_ . P ;i, 1/2
_t - (U=UBJ m - (u=uB)

li _i, 1/2
-- = = _ (UmUB) (3-4)

I f uo_+
_%x B 8x=/m [axB 8x=/m

(Length Scale) (Velocity Scale)

It It

subscript m denotes that the quantity is evaluated where u=u B is a

maximum value.

Kolmogoroff suggests that at sufficiently high Reynolds numbers

there is a range of high wave numbers where the turbulence is

statistically in equilibrium and uniquely determined by the

parameters of viscous dissipation of turbulent motions, (, and

kinematic viscosity, v (= u/p) (Hinze, 1975) . This state of

equilibrium is _l__e_;__l • This equilibrium range is termed

"universal" because the turbulence in this range is independent of

external conditions, and any change in the effective length scale and

time scale of this turbulence can only be a result of the effect of the

parameters ( and v. The Kolmogoroff length scale, n k, time scale, 7 k,

and velocity scale, vk, are represented by:

_k = (3-5)

T k "- (3-6)

V k = (V() 1/4 (3-7)

The eddy wave number, k 4 , where the viscous effects become very strong

will be of the same order as i/_ k. k 4 is defined as:

12
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k d =--=
'qk

(3-8)

In other words, the viscous effect becomes much stronger than the

turbulent dissipation when the eddy wave number is much greater than

k d •

Viscous dissipation of turbulent motion is expressed as:

. Ou_ FOu

8x B '_8xB 8x=/
(3-9)

For the case of homogeneous turbulence in which all spatial

derivatives of mean turbulent quantities become zero, the viscous

dissipation of turbulent motion becomes:

f.u:I
__ xB)

(3-1o)

Definitions for the turbulent velocity scale V t, integral length

scale _|, and Taylor micro-length scale kt applied to subsequent terms

yield:

uau B N V t

/_u': '_1 v.,
u_uB _Sx_ 8x s)

.u:i.u:_u_/ v,,
ax_ 8x B) _t8x B

a _ Vt 3. _ /I II.
-- _u_u_uB; _v --

ax B k i

(3-1l)

(3-12)

(3-13)

(3-14)

where Equation (3-11) shows density-weighted Reynolds stress;

Equation (3-12), turbulence production by density-weighted Reynolds

stress; Equation (3-13), viscous dissipation of turbulent energy by

13



-< jl j-

Comparison of length scales indicates:

_i _ _T _ nk viscous dissipation (3-15)

where _i, _T, and nk denote integral length, Taylor micro-length, and

Kolmogoroff length scales, respectively. Equation (3-15) shows a

cascade transport of turbulent energy in which large inhomogeneous

eddies transport energy to small homogeneous eddies, which finally

disappear through viscous dissipation.

14



IV. ExaminatioD of Various T_;b_lence Model_

k__/;

In the previous section, we have indicated that the diffusion

i I / /t
fluxes,_u_,_Y s and brained from density-weighted mean values

of the balance equations, require a specification for the closure

problem. By using Boussinesq's eddy viscosity model, it is evident

that eddy viscosity v t is not a property of the fluid, but is simply a

function of a length scale and a time scale of the turbulence. It also

has been shown in the previous section that there are various length

scales of turbulence, which come from the inhomogenous large eddy

integral length scale, Taylor microscale and a homogenous small eddy

Kolmogoroff length scale, before viscous dissipation becomes

effective in energy dissipation.

There are several ways to model the eddy viscosity v z before one

can solve the turbulent reacting flow by means of satisfying the

closure problem.

(A) Zero Equation Models

Zero equation models are mostly based on the eddy viscosity

concept. This concept uses the mathematical convenience of

retaining the same form of differential equations for laminar and

turbulent flows and allowing the use of the same solution procedure.

The first turbulence model proposed, Prandtl's mixing length

hypothesis, is still widely used. It employs the eddy viscosity

concept which relates the turbulent transport terms to the local

gradient of mean flow quantities, namely_

15
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f u=1
tSx B 8x_J

(4-1)

where vt is the eddy viscosity.

The Prandtl mixing length hypothesis calculates the

distribution of eddy viscosity by relating it to the mean velocity

gradient

/%/

vt - C=L. 2 -- + -- (4-2)

ax B %x=!

This relation involves a single unknown parameter, the mixing length

Lm whose distribution over the flow field has to be prescribed with an

empirical information. C= is a constant . The mixing length model

has been used for thin shear layers and wall boundary layers

(Spalding, 1982). The main drawback with this model is the

evaluation of L m for different types of turbulent flows. The

evaluation of L m becomes difficult for recirculating flows, three

dimensional flows, reacting flows, etc. In the already empirical

specification of the mixing length , it is difficult to incorporate in

any useful manner, the effects of curvature, buoyancy, rotation, etc.

The transport and memory effects of turbulence are not accounted for

in the mixing length model because transport equations for turbulent

quantities are not involved in this model.

(B) One Equation Models

One of the simplest ways to characterize the turbulence is to

consider the eddy viscosity in terms of two quantities, _i its

integral length scale and k its kinetic energy (the time scale is

nothing but _i/k i!2) . Eddy viscosity by dimensional analysis

16
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becomes:

v t = C_ _i ki12 (4-3)

The integral length scale is specified algebraically and hence is

turbulent flow dependent. The turbulent kinetic energy is derived

from the Navier-Stokes equations in the one equation model by solving

its transport properties (Launder and Spalding, 1972). This

approach performs only marginally better than the zero equation model

in terms of the modeling of recirculating flows, three dimensional

flows, reacting flows, etc.

(C) Two Equation Models

In attempts to eliminate the need for specifying the turbulent

length scale as a function of position throughout the flow, the eddy

viscosity, shown in Equations (4-2) and (4-3), can be replaced by the

following equation:

-2
k

v t - C_ --j (4-4)
(

In this expression, C_ is a scalar constant for isotropic turbulence

and becomes a vector quantity (no longer a constant value) for the

marginal extension to cover the cases of anisotropic turbulence, such

as three-dimensional rotation flows. The eddy viscosity can be

determined if one can solve two differential equations, one for the

density weighted mean values of turbulent kinetic energy k and the

other one for the density weighted mean value of turbulent dissipation

The modeled equations for k and _ are given below:

Kinetic Energy (k) Equation:

17
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8t 8X_ 8X_ Pr t ax_

u m

u t 8 8 8P

_2Pr t 8x_ 8x_

w

p e

Kinetic Energy Dissipation (e) Equation:

-- (pc) + -- [e u_ e] = Ce, 2, Pk - Cel

8 t 8x_ k

+ ..... Ce2 P-
8x_ ¢_ ax_ j k

(4-5)

J_, n w

e _t 8p 8P

_2Pr t 8x_ 8X_

(4-6)

where

;i it" -- U=U= (4-7)
2

r.u l'= V -- (4-8)

LSXs/

8ua
= -- I_ IIPk - p (4-9)

8x 8

The coefficients, such asCel, Ce2, qe, are constants in the sense that

they are not changed in the modeling calculation. However, these

constants need to be changed in order to accommodate the effects such

as curvature, low Reynolds number, near wall effects, etc. Pr t is the

turbulent Prandtl number which is not species dependent, and is also

considered a constant in the modeling calculation.

(D) Two Equation Models Modified by Turbulent Combustion

The k-e model, shown in the previous section, is modified through

the interaction of turbulent flow and turbulent combustion. Bray and

Libby (1976), Bilger (1976), and Jones (1980), and Brayet al., (1981)

18
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have devoted particular attention to this problem. The modified

balance equations for turbulent kinetic energy and dissipation rate

of turbulence can be shown as follows:

Modified Turbulent Kinetic Energy Equation:

a ~ a f -;_'-" -_,,,,1
a ;_ + __ (; u=_)= [ " " " p u=j.... u_uBu B +

8t %X= 8x= 2

t"_ -- I|

__ _ 8U_ J'--78p @U_ -- { @U_ @U_I

-- p u=u B uB p' p Iv -- . -- I
8Xc¢ 8x B 8x B 8x= %x=)

(4-10)

where

N

I.u 1u=u s = - vt (k, ;) -- +-
_,8x B 8xcd

1 _ 1 ---- vt a_
II

-- U_UI_UI_ + -- p'u a =

2 O Sct, k 8x¢¢

- U_ -- = uaYs --
ax= T ax=

(4-11)

(4-12)

(4-13)

and SCz, k is the turbulent Schmidt number which is not species

dependent and is chosen to be 0.9 in Equation (4-12).

Modified Dissipation Rate Equation of Turbulence:

a _. a __ . a [(_vt-- p_ + -- (p u= _) =-

8t 8x_ 8x_ Sc t ,

N "_ •

_ __ + CE3 -- _ u_Ys

8xa.I k T

e; I _ -_
-- I h. 8u_

;2
p CE2 -- (4-14)

9x_ k

where Sct, _ = 1.3; constants C_I = 1.45, C_2 = 1.9, C_3 = 2.18 and C D =

2. Tad is the adiabatic flame temperature and T o is the mixture

19
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temperature of fuel and oxidizer.

(E) Reynolds Stress/Flux Models

The k-_ model is based on the eddy viscosity/diffusivity concept

in which it is assumed that the eddy viscosity/diffusivity is

isotropic. This means that various Reynolds stress u_u B and

"_"(#" is either Y," or h") are all taking similardiffusion fluxes ua_

forms. This assumption is certainly not true for complex flows

(Jones, 1980). To overcome this problem, transport equations for the

various Reynolds stresses and scalar diffusion fluxes must be derived

from the Navier-Stokes equations. These equations contain higher

order correlations which have to be approximated by lower order

correlations to obtain a deterministic set of equations. The

application of a Reynolds stress/flux turbulence closure model is

limited because, especially in flows with a large number of species,

the number of equations to be solved is large.

Reynolds Stress Closure Models include a transport equation for

Reynolds stresses, a transport equation for diffusion scalar fluxes,

a kinetic energy equation and a kinetic energy dissipation equation.

These equations are shown as follows (Kollmann and Vandromme, 1979;

Jones, 1980; Borghi, 1988):

Transport Equation of Reynolds Stresses:

il II _ -- "_, il II.

__a (_ u=uB; + -- (p u_ u=uB; = P=B + -- [C, p - ,
at ax a ax k e

• il al -- # Ii -- --

. -- )j - (u=u_ 5=S k)ukuv ax v _u=ujs) - CzP k 3

2O
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j
C 2 + 8 _ 6C 2 + 4

P=S
ii

2 - 8c, r;,_ il II

L U_U k

Ii

I.uo1• --+ -- pk+

8x B %x_l

-- # el

(p u=u s -- uk + _=s Pk)
ii 8x k

8uk]
8 _ JI .

-- u k + _ uSuk --

8x s 8x=/

40C z + 12 8u k __ 2

8aS- pk--
55 %x k 3

30C 2 -

55

where

N

/-_ _ ./'_. au s __. 8u=
PaS = - P uauk P USUk --

8x k 8xk

1 _ -- I_/_ II 8U_

Pk = -- Paa = -P u=Us --
2 ax s

C t and C z are constant.

Transport Equation for Diffusion Scalar Fluxes:

-- II --/_ " - U; aU=-- (p u= _'I+- (,,, usu= ;I = .,. *"
8t 8x s _ 8xs

k -- + uSu k. -- + -- C s P ~ lU_Uk

8x s 8x s 8x_ 8x k

/%/

us _ - - (aSk P i, ,,. u_ # + 5_k "p --
5 8xk

-- i[ /i
+ - _ us _ -- + p u= s

5 8x s

. )
3

i# II
U_UB '

2
i

(4-15)

(4-16)

(4-zT)

(4-18)

21



where

l

S ==--W s
P

(4-z9)

C s, C#t and C#2 are constants.

Modeling Equation for Fluctuating Velocity Components:

/%1

-- a _ au= [_ k f_,_Tr,,-- -- t# II

.... + [ U_U B - Cs --a c;u"=_÷- c;u_u=_ _u_ax_ [u=u_
%t 8x B

• -- -- -- I| II -- |1 II8 p u_' + uBu k p u_ -- + -- C s -- (u_u k ,

8x _ 8x _ 8x s ax B

-- -- _ It ;I l J -- --
ax k Ox k

_"- ', _ __ ;,u_ au:u e 2 Ou:

' ,-,. 8=el - c3o p u_' c4_ 7 u_
k 3 ax e _ ax e

(4-20)

where Cs, Ctc , C2c , C3c , and C4¢ are constants.

Turbulent Kinetic Energy Equation:

a a

-- (pk) +
St ax e

-- p_

where Pk is shown in Equation (4-18), and

9, II "7,

(7 &ek) = Pk + -- c, - 7 ueuk -- - u= --
ax e "_ ax,, ax¢

(4-21)

C s is a constant.

Turbulent Kinetic Energy Dissipation Equation:

m i •

-- (p,) +- (_ ;) = c,, _ [.= u= ax=) +-St ax e ax B

-- _ #J
, C_ p = u_u e . -- - CE2 p --

ax= k

(4-22)
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(F) Algebraic Stress/Flux Models

The Reynolds stress/flux model discussed in Section (4-E) is one

of the most general turbulence closure models that can be applied to

almost all kinds of turbulent flows. Disadvantages of this method,

however, are the large number of differential equations that have to

be solved and the complexity of the model. To overcome these

problems, Algebraic Stress Models have been developed in which the

transport equations for Reynolds stresses and diffusion scalar fluxes

are simplified to algebraic equations, whereby the model still

retains most of its basic features, such as for instance the

anisotropic eddy viscosity/diffusivity concept (Rodi, 1976).

Transport Equation for Reynolds Stresses in Algebraic Expression:

'/ ;e
UaUB = -- P=B

Pk + u_ p

8xa

- c_ p - (u=u s
k

2 C z + 8 _ 6C 2 + 4 Ip _ 8u_• lJ ii --
- - _=B k) P_ u_us

3 Ii ii [ 8X k

+ _B Pk U=Uk -- + P UBUk --

ii @X B 8x=)

30C, - 2(8_ %uB_ _. 40C2 + 12 8u k _~

- l-- + --_ p k + a:B -- p k +
55 _%x 8 %x=j 55 8x_

3

(4-23)

where C I and C z are the constants.

Transport Equation for Diffusion Scalar Fluxes in Algebraic

Expression:

23



J

# _II
U_p = _ {_

- u_ 8x_

_"--- %1 7-u=_ + 7

u_,°au= _ a_p u_uB -- +
8x s

ii _|1 --
us,_ -- (ss, , "; u=,_-,- a=,, ";

5 8x j:

-- lW .. - u_S)+-- puB_--+ _
)5 %x s

26_B '
3

where C#t and C#2 are constants.

Modeling Equation for Fluctuating Velocity Components:

_-- au= ,/_. aP _- , _---7, u=us 2
- u_ _ - -p + U=cuB C t¢ p u=¢ + C 2¢ ~ p u B

8x B %x B k k

I%1 _2" _

- c_= _ uB - c4_ ,, ("; us) = o
¢_uB p 8x B

(4-24)

(4-25)

k._/

where CI¢ , C2¢, C3¢ and C4¢ are constants ,

(G) Multiple-Scale Turbulence Models

Turbulence consists of fluctuation motions with a continuous

spectrum of length and time scales. The largest length scale of

eddies have the dimension of the flow field, while the smallest length

scales are related to the diffusive action of the molecular viscosity

(Tennekes and Lumley, 1972). Turbulent energy production is related

to the largest eddies, while dissipation of the turbulent energy is

primarily related to the smallest eddies. Turbulence closure models

which employ just a single length scale, therefore, are very
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simplistic because they neglect the fact that production and

dissipation of turbulent energy occur at different length scales.

The fact that single-scale models yield successful predictions of

many flow fields reflects more that these flows are close to spectral

equilibrium. In other words, the production of turbulent energy of

the large eddies (_p) equals the dissipation of the small eddies (cT) ,

namely _p = _T = _, rather than that the single-scale model is adequate

(Hanjalic et al., 1980). In view of turbulent energy production

occurring at large length scales and dissipation of turbulent energy

mainly taking place at small length scales, there must be a transfer

region of length scales in which turbulent energy is transferred from

the largest eddies to the smallest. This transfer can introduce a lag

phenomenon, namely turbulent energy production and turbulent energy

dissipation do not both decrease or increase in the same regions of the

flow (see Figure 1 for details) , as for instance the k-_ model implies

(Hanjalic, et al., 1980). Figure 1 shows the energy spectral density

of turbulence in a shear flow at high Reynolds number as a function of

the wave number K (I/K is proportional to the length scale).

To introduce a model which takes into account the different

processes at different length scales (or wave number), Hanjalic et al.

(1980) divided the energy spectral density distribution into three

parts, as shown in Figure 1. They assume that production of turbulent

energy takes place at wave numbers below K,, characterized by kinetic

energy kp and energy dissipation _p, that transfer of turbulent energy

takes place in the wave number range from K I to K 2, characterized by

kinetic energy k T and energy dissipation sT and that at wave numbers
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division of the energy spectral density distribution into more than

three parts is the key feature of the multi-scale-model. The energy

spectral density range may be divided into as many parts as possible.

In practice however, a division into three regions appears to be

sufficient (Fabris et al., 1981). This requires two sets of

transport equations. The k-_ equations for the production region (K

< KI) can be written as follows:

8 __ 8 __

-- (p kp) + -- (p u B kp) = Pk
8t 8x B

Kinetic Energy Equation for Production Region (K < KI):

u t %P 8p
+

pr t _2 8x= %x=

m u. n

8x B Pr t @x B

(4-26)

Energy Dissipation Equation for Production Region (K < KI):

_ _

-- (pcp) + -- (p uscp) = Cp, _ Pk - cpl _
%t %x B kp kp _2pr t 8x= 8x=

8 _t 8 _p _ _p

+ ..... Cpz p _ (4-27)

%x B Pr t 8xB kp

N

where PL is shown in Equation (4-18) and Cp, and Cp2 are constants.

The k-_ equation for the transfer region (K 2 > K > K z) can be shown

as follows:

Kinetic Energy Equation for the Transfer Region (K 2 > K > K I) :

a _/v o _ ... ,,. _ ,,,,, a [ at @kT]
-- (p k T) +- (p u S k T) = p _p + .... _ _ (4-28)

[8t 8x B 8x B Pr t %x 8

Energy Dissipation Equation for the Transfer Region (K 2 > K

> K,):
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8t ax B

2
_ ET

- CT2 p--
kz

where

kp f"_ N kp
v t = c_ k _- c_ (kp + k T)

ep el)

--pep+-- -
k T 8xB Pr tax s

+

(4-29)

(4-30)

and Pr t, CT1 and CT2 are constants.
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_ _imu_ations of _ Reactina Flows

In some cases, the approach based on turbulence models has been

very successful, and the results obtained by such models have shown

encouraging agreement in comparison with experimental data. In

complex chemically reacting flow, however, modeling is extremely

difficult because of the lack of knowledge of the intricate flow

dynamics. Also, a turbulence closure optimized for a particular type

of flow may not be adequate for predicting the flow behavior in other

configurations. Moreover, since most of the interesting dynamical

behavior of a flow is modeled a priori, the outcome of numerical

computations based on these turbulence models cannot substantially

advance our understanding of turbulent reacting flows (Givi, 1989).

Recently, improved efficiency of numerics, storage capability,

and computational speed have made it possible to solve appropriate

transport equations of turbulent flows directly, without the need for

modeling over some limited parameter range (Givi, 1989). Such

simulations (defined as Model-Free), in comparison with calculations

utilizing turbulence models, have the advantage that the physics of

the problem is not modeled, but is recovered directly from the

computed results. The results can be further used to understand many

important mechanisms of turbulent transport and their direct coupling

with chemical reactions.

Model-free simulations consist of solving the time development

of the detailed, unsteady structures in a turbulent flow field. The

nonlinear transport equations are solved by means of very accurate
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numerical methods so that no averaging (Reynolds or Favre average) is

necessary. Therefore, no turbulence modeling is required. In these

simulations, data acquisition and statistical sampling of the

ensemble data are performed by a procedure analogous to laboratory

experiments. In this respect, the model-free simulations offer the

advantage that the thermo-fluid parameters of the flow field can be

easily varied, and the conditions of the numerical simulations are

more controllable than those in the laboratory experiments (Givi,

1989).

The majority of the approaches in model-free simulations can be

classified into two general sub-categories: (1) Direct Numerical

Simulations (DNS), and (2) Large Eddy Simulations (LES).

(A) Direct Numerical Simulations

The main outcome of direct numerical simulations is the

emergence of various numerical methods that are able to handle large

variations of length and time scales within a turbulent flow field.

The numerical schemes currently in use for direct numerical

simulations of reacting turbulent flows can be classified into three

categories: (1) Spectral and pseudospectral methods (Canuto et al.,

1987; Anderson et al., 1984), (2) Lagrangian scheme (Oran and Boris,

1987) and (3) Finite difference methods (Davis and Moore, 1985).

Despite the capability of present day supercomputers in allowing

the calculations with more than one million grid points, the range of

length and time scales that can be resolved by direct numerical

simulations is substantially smaller than those of turbulent flows of

practical interest. This limits the applications of direct
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numerical simulations to basic research problems in which the scales

of the excited modes remain within the band of computationally

resolved grids (either in physical or spectral domain). In practice

this implies that for an accurate simulation, the magnitude of

viscosity and diffusivity must be large enough to damp out the

unresolved scales, and the magnitude of the computational time step

must be kept small enough to capture the correct temporal evolution of

the flow. These restrictions impose severe limitations for

practical engineering applications.

(B) Large Eddy Simulations

The methodology of large eddy simulations involves the pre-

filtering of the transport equation by decomposing the transport

variables into large-scale and sub-grid-scale components. The

former component is related to the large eddies in the turbulent

field, whereas the latter is the component containing the small-

scale fluctuations (Schumann and Friedrich, 1986; 1987).

The pre-filtering of the variable _ (x_, t) is performed by means

of the convolution integral

<#

where F t is an appropriate filter function with a characteristic

length along =-direction, a=; <> represents the filtered variable;

and the integration is over the entire flow field. The remaining

portion of # from the filtered quantity is defined as the sub-grid-

scale field, and is represented by
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4' (xe, t) = # (xe, t) -<4 (Xa, t)> (5-2)

The Large Eddy Simulation is a combination of the direct

numerical simulation for the filtered portion of the transport

variable <4>, and the sub-grid-scale modeling of the small-scale

component 4'. At first glance, the methodology seems similar to the

familiar Reynolds averaging. A closer comparison between the two

averaging procedures, however, indicates the superiority of the pre-

filtering method in that only the contribution of the small scale

structures need to be modeled, whereas in Reynolds type averaging

closures are needed for all the length scales of motion (Givi, 1989).

The fact that the small scales of turbulence exhibit a more universal

character is the main reason to believe that attempting to provide a

subgrid scale model would be more promising than the previously

followed procedures based on Reynolds averaging closures.

An obvious extension of this approach would involve solving a

transport equation for density-weighted probability functions of the

subgrid scalars rather than assuming their form. This approach, like

its counterpart in turbulence modeling, has the advantage that the

effect of the chemical reations (scalar-scalar correlations) will

appear in the closed-form. However, models are needed for molecular

diffusion within the subgrid.

The rate of progress in this area of direct numerical simulations

depends on the advance in the fields of (a) numerical methods, (b)

supercomputer technology, and (c) the mathematical description of

reactive flow transport. Forseeable developments of advanced

computational facilities, however, will not be sufficient to relax
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the restriction of Direct Numerical Simulations to flows having small

to moderate variations of the characteristic length and time scales

(Givi, 1989; 1990). Hence, the boundaries of applicability of Direct

Numerical Simulations are, and will continue to be, significantly

restricted.
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VI _ _ Recommendation
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As we have already mentioned, the diffusion fluxes require

specification for the closure problem. It has been shown by the

Boussinesq model, that the eddy viscosity, vt , is not a property of the

fluid, but instead a function of a length and time scale. Also the

length scales evolve from inhomogeneous large eddy integral length

scales, through Taylor microscale, to homogeneous small eddy

Kolmogoroff length scale before viscous dissipation effects

turbulent energy dissipation.

II .
In the turbulence modeling of the diffusion fluxes, such as u_u B,

_ and_ through Boussinesq's eddy viscosity model, there are

zero equation, one equation, two equation, modified two equation

models, etc. These models are based on the assumption of isotropic

turbulence in which the viscous dissipation of turbulent motion is

simply given by the following expression:

•= v -- (6-I)

k_x B)

In other words, various Reynolds stresses and diffusion fluxes of

turbulence take similar forms. This assumption is certainly not true

for complex flows (Jones, 1980). To overcome this problem, transport

equations for various Reynolds stresses and scalar diffusion fluxes

must be derived from the Navier-Stokes equations. The Reynolds

stress closure models include a transport equation for Reynolds

stresses, a transport equation for diffusion scalar fluxes, a kinetic

energy equation, and a kinetic energy dissipation equation. The
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Reynolds stress/flux model is one of the most general turbulence

closure models that can be applied to almost all kinds of turbulent

flows. Disadvantages of this method, however, are the large number

of differential equations that have to be solved and the complexity of

the model. To overcome these problems, algebraic stress models have

been developed in which the transport equations for Reynolds stresses

and diffusion scalar fluxes are simplified to algebraic equations,

whereby the model still retains most of its basic features, such as for

instance the anisotropic eddy viscosity/diffusivity concept.

However, this model has been hardly tested in combustion problems.

Turbulence consists of fluctuation motions with a continuous

spectrum of length and time scales. The largest length scale of

eddies have the dimension of the flow field, while the smallest length

scales are related to the diffusive action of the molecular viscosity

(Tennekes and Lumley, 1972). Turbulent energy production is related

to the largest eddies, while dissipation of the turbulent energy is

primarily related to the smallest eddies. The fact that single-scale

models, employed by turbulence closure models, yield successful

predictions of many flow fields, reflects more than that these flows

are close to spectral equilibrium. In other words, the dissipation

of turbulent energy of the large eddies equals the dissipation of the

small eddies rather than that the single-scale model is adequate

(Hanjalic et al., 1980). Multiple-scale turbulence models were

introduced to take into account the different processes at different

length scales which includes a transfer region of length scales in

which turbulent energy is transferred from the largest eddies to the
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smallest. However, this model has not been tested to treat

combustion problems.

In some cases, the results obtained by turbulence models have

been very successful in comparison with experimental data. In

complex chemically reacting flows, however, modeling is extremely

difficult because of lack of knowledge of the intricate flow dynamics.

Also, a turbulence closure optimized for a particular type of flow may

not be adequate for predicting the flow behavior in other

configurations. To avoid these deficiencies caused by turbulence

modeling, it is suggested to solve appropriate transport equations of

turbulent flows directly, without the need for modeling over some

limited parameter range. Model-free simulations have the advantage

that the physics of theproblem is not modeled, but instead taken from

the computed results. Therefore, the results can be used to

understand important mechanisms of turbulent transport and their

direct coupling with chemical reactions. Direct numerical

simulations and large eddy simulations are a large part of model-free

simulations. Direct simulations are able to handle large variations

of length and time scales in a turbulent flow field by the emergence of

various numerical methods. Direct numerical simulations are limited

to basic research problems rather than engineering applications

because the range of length and time scales that can be resolved by

direct numerical simulations is much smaller than those of turbulent

flows

In this report, our major concerns were to examine how the

available turbulence modelings or the methods of model-free direct

35



./l

simulation of turbulence can be efficiently used for the practical

engineering application in liquid rocket thrust chambers. With

these major considerations in mind, the advantages and disadvantages

of the available turbulence models are summarized below.

(A) Zero Equation Models

These models assume isotropic turbulence, and can be applied to

two-dimensional simple shear flows with mild pressure gradients, mild

curvature with no flow seperation and/or rotation effects. They can

be further applied to three-dimensional turbulent boundary layers

with small cross flows and very mild pressure gradients without

curvature and rotational effects. They are bad for turbulent flows

with large cross flows; flows with curvature, rotation and

separation; pressure and turbulence driven secondary flows; flows

with abrupt changes in shear rate; shock induced separated flows, etc.

(B) One Equation Models

Similar to zero equation models, these models assume isotropic

turbulence, and can be applied to two dimensional simple shear flows

without curvature and rotation effects. For the case of two

dimensional separated flows in a diffuser, they are slightly better

than the zero equation models. Disadvantages for these models are

similar to those of the zero equation models.

(C) Two Equation Models

These models have been widely tested with good results in

combustion problems. However, the basic assumption of these models

are still based on the isotropic eddy viscosity/diffusivity concept.

This concept fails in complex flow problems.
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(D) Two Equation Models Modified for Turbulent Combustion

Modification of two equation models can greatly improve the

quality of combustion modeling through the interaction of turbulent

flow and turbulent combustion. The following examples are given to

illustrate the modifications:

(D-l) Modification of Combustion Rate (W)

To find a model for the combustion rate W is at the core of the

turbulent combustion modeling. The basic considerations of this

modeling include: (I) The combustion rate (Wi), given by chemical

kinetics, is a molecular rate, and is a highly nonlinear function of

several variables; and (2) Due to nonlinearity, W is a probability

function for the encounter of combustion rates between various

species and is not the value of W i with the mean values of these

variables only.

For a bi-molecular reaction between species A and B (A + B + C) one

obtains

W 1 = W 9 = _ kcYiY B

and then

WA - - kcY_Y s = - kcYAY s - kcYAY B (6-3)

where k c is a forward reaction rate constant. The following

situations can exist, as shown below:

If Y1 and YB are fluctuating out of phase

< 0 -_ Y_Ys < Y_YB

If Y1 and YB are fluctuating

YAYs > 0 _ Y_YB > YAYs

in phase

If Y1 and YB prevent reaction

(6-2)

(6-4)

(6-5)
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Y_YB "= 0 and YA # O, YB _ 0 (6-6)

The effect of temperature fluctuations could play an important

role when the forward reaction constant k c is a function of T, as in the

case of combustion. Let us assume:

(6-7)

where k 0 and T_ are constants.

The mean reaction rate can be modeled with reference to an

isothermal bimolecular reaction. For non-isothermal reactions, by

using Equation (6-7) and expanding exp(- T_/T) in a power series, we

have mean values of the reaction rate shown as:

W_ = W 9 = - k0Y_Y8 ex p - 1 +_

Y_ Ys

T_I2

+

+ PI -- _ + + Pz +

_Y_ T YB T] (_) 2

---- + + P3

where the terms PI are polynomials of

+ ''' I (6-8)

(D-2) Modification of Turbulent Diffusion Fluxes By Combustion

Further modification of turbulent diffusion fluxes, shown in

Equation (2-12), is needed for consideration of the influence of

combustion on turbulence through the modification of the turbulent

reaction rate. Turbulent diffusion fluxes ueY| modified by

combustion can be shown as follows (Borghi and Dutoya, 1978; Borghi

and Escudie, 1984; Launder, 1976):
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at axj3 8x B

_ aY:'
P uBYI -- + P' --

8x s 8x s 8xa.

_ 8Yi
+ - 7 u uB

8Xa.

In this equation, the term YI i remains because the fluctuation is a

density weighted fluctuation (that is _[I = 0 and _ _ 0).

(E) Reynolds Stress/Flux Models

Boussinesq's eddy viscosity/diffustion fluxes models have been

adopted in the turbulence closure modeling of zero equation, one

equation, and two equation (including k-_ model) models. According

to Boussinesq's formulation, isotropic turbulence is a foundation in

the turbulence modeling, but this is not true for complex flows

(Jones, 1980; Givi, 1989). To overcome the unappropriate assumption

of isotropic turbulence for the description of thrust chamber

reacting flow problems, transport equations for the various Reynolds

I# II II i I
stresses u_uB, and diffusion fluxes u_h and u_Yi, must be derived from

the mean value balance equations of continuity, momentum, energy and

species concentrations.

The advantages of adopting Reynolds stress/flux models in

turbulent thrust chamber reacting flow problems are that they are

applicable to almost all turbulent flow problems. There are some

disadvantages for adopting this model which include: (i) a very

large number of partial differential equations to be solved,

especially for multi-component mixtures; (2) the mathematical
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formulation of this model is very complex; and (3) model is hardly

tested for combustion reacting flow problems.

With present day advances in supercomputer technology, the

former two disadvantages quoted can be easily solved as the new

generation hardware components and software techniques are

developed. As to the last disadvantage quoted for the limited number

of combustion reacting flow tests, it can be improved through the

endeavor of joint controlled modeling-experiment efforts in reacting

flow problems.

In this regard, we strongly recommend the Reynolds stress/flux

model as a major candidate for the future study in thrust chamber

turbulent reacting flow problems.

(F) Algebraic Stress/Flux Models

To overcome the disadvantages of the large number of

differential equations that have to be solved and the complexity of

the mathematical models associated with Reynolds stress/flux models,

algebraic models have been developed to simplify the transport

equations for Reynolds stresses and diffusion scalar fluxes to

algebraic equations (Rodi, 1976). The advantages of this model are

that it is very general in nature, and simpler in mathematical forms

than that of the Reynolds stress/flux models, but still retains the

basic features, such as the non-isotropic eddy viscosity/diffusivity

concepts. The disadvantages of this model are that it is still very

complex mathematically in comparison with other models, such as k-_

models, and it has been little tested with respect to combustion

problems.
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(G) Multiple-Scale Turbulence Models

Length and time scale motions vary constantly in turbulenc.

Although production and dissipation of turbulent energy occur at

different length scales, turbulence closure models employ only a

single length scale (Hanjalic et al., 1980). By introducing a

turbulence model with different length scales, one can handle the

turbulence energy spectral density distribution transition from

smaller wave numbers (turbulence energy production) to larger wave

numbers (turbulence energy dissipation).

The multiple-scale turbulence models can either be associated

with eddy viscosity/eddy diffusion concept formulations or with

Reynolds stress/flux type manipulation.

(H) Model-Free Simulations

Instead of seeking turbulence models based on Favre and Reynolds

averages for obtaining mean values and correlation mean values of

fluctuations for thermochemical and flow variables of chemically

reacting flows, one can use a model-free simulation by solving the

balance equations directly (Givi, 1989; 1990). These model-free

simulations include Direct Numerical Simulations and Large Eddy

Simulations.

The advances in the fields of model-free simulations are

strongly dependent upon the mathematical description of reactive flow

transport in addition to the progress in supercomputer technology and

numerical methods. In other words, direct numerical simulations

having small variations of characteristic length and time scales will

still be restricted even with the development of advanced computer
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facilities (Givi, 1989; 1990). Within a forseeable future, the

applicability of direct numerical simulation to the turbulent

reacting flow problems will be mainly in the academic interests, and

will be significantly restricted for engineering applications.

k_w
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VII. Conclusions

Turbulence is rotational and three-dimensional. Turbulence is

characterized by high levels of fluctuating vorticity and random

fluctuations in nature. Turbulent flows are always dissipative,

while the random waves are essentially non-dissipative (Tennekes and

Lumley, 1972). Turbulence is a continuum phenomenon, and even the

smallest scales occurring in a turbulent flow are ordinarily far

larger than any molecular length scale. Turbulence is not a feature

of fluids but of fluid flows.

Thermochemical flow parameter and fluctuations of motions of

length and time scales vary continuously in turbulence. This means a

turbulent flow has to be considered as an ensemble of random flow

fields. Indeed, only statistical quantities are of practical

meaning in order to describe the randomness within the flow.

Turbulent reacting flow problems can be attacked either by

model-free direct simulation approaches, or by the use of Favre and

Reynolds averages for the ensemble of flow fields. Model-free

simulations include Direct Numerical Simulations and Large Eddy

Simulations. Model-free simulations will continue to be

significantly restricted for engineering applications of turbulent

reacting flow problems because the advancement of supercomputer

technology and numerical methods alone can not solvethe mathematical

description of reactive flow transport arising from the nature of

random fluctuations of turbulent flow fields (Givi, 1989; 1990)._

Table 1 shows the classifications of approach used to handle turbulent
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flow problems including model-free simulation and turbulence

modeling.

The other approach is to connsider the variations and

fluctuations of fluid density, which are more likely to occur in

reacting flows with large temperature differences in turbulent

combustion studies, by using mean values weighted by the density to

handle fluid flows with a nature of randomness, irregularity,

diffusivity and dissipation. This type of approach can be further

divided into two large groups, with and without considering the

Boussinesq expression of closure assumption.

Turbulent reacting flow problems can not be solved by using mean

balance equations of continuity, momentum, energy, and species

concentration. These equations involve new quantities of the

turbulent Reynold stress/diffusion fluxes. For example, u_u s,

_ jl .. ad

and u=. i are usually greater than the mean molecular scale, also

correlations between fluctuations are not mean values only.

With adopting Boussinesq's expression of closure assumption,

one can introduce the concepts of eddy viscosity/eddy diffusion

fluxes. Turbulence modelings based on Boussinesq's expression

include zero equation, one equation, two equation (this contains k-_

models with and without modifications of combustion rate chemical

reaction rate, etc.), and multiple-scale models associated with eddy

viscosity. Most of the turbulence modelings based on Boussinesq's

expression of closure assumptions have been widely used in

engineering applications, and also widely tested with good results in

combustion problems. However, the fundamentals of Boussinesq's
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expression are built on the assumption of an isotropic eddy

viscosity/diffusivity concept. This assumption is certainly not

true for complex flows (Jones, 1980; Givi, 1989). In particular, the

isotropic turbulence assumption fails in complex flow problems for

the description of thrust chamber reacting flow fields.

Reynolds stress/flux models adopt the transport equations

derived from the mean values balance equations of continuity,

momentum, energy and species without using Boussinesq's expression of

closure assumptions. This makes Reynolds stress/flux models very

general and applicable to almost all flow problems. It is true that

this model requires a large number of partial differential equations

to be solved, especially for multi-component mixtures, in addition to

the complexity in its mathematical formulation. With the

advancement in supercomputer technology and numerical methods in the

foreseeable future, we strongly recommend that the Reynolds

stress/flux model be adopted as a major candidate in the future

development of computation tools for the study of thrust chamber

turbulent reacting flow problems.

A workshop was held on the campus of the University of Alabama in

Huntsville during the time period of April 15 and 17, 1991, in

connection with one task of a contract between the University and NASA

Marshall Space Flight Center. The contractual effort was oriented to

review various turbulence models, used in existing liquid rocket

thrust chamber flow simulation programs, and other potential

techniques. The study resulted in the recommendation of the Reynolds

Stress Model.
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Appendix A

Conventional Mean Values (Reynolds Average)

and Density Weighted Mean Values (Favre Average) of

Turbulent Reacting Flows

Due to the variations and fluctuations of the fluid density which

are more likely to occur in reacting flows with large temperature

differences, it is rather common, in turbulent combustion studies, to

change the classical definition of conventional mean values (Reynolds

average) to density weighted mean values (Favre average). It appears

that the use of mean values weighted by density is better able to

handle fluid flows with randomness, diffusive and dissipative

irregularity.

The conventional mean values are defined as:

A = A +A' (A-l)

where () is the conventional mean value and ()', the corresponding

value for fluctuation. () can be further defined as:

X = lim -- Adt (A-2)

t_m 2T "-T

This formulation of conventional mean values can be written as

i

A (xl, t, v) = A (Xi, t) + A' (xi, t, v) (A-3)

where:

fo:A (xi, t) = (xl, t, v) f(vldv (A-4)

The function f(v) is the probability function of the property v. This

function is defined such that f(v)dv is the probability that the value
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_v

of A at a fixed point (xi, t) lies in the range from v to v + dr.

Because v represents all possible values that A can take at a given

point (xl, t), it is clear that:

®f(v)dv = 1
(A-5)

The density weighted mean values are defined as:

A(x i, t, v) = A(x i, t) + A'' (x|, t, v) (A-6)

where () is the density-weighted mean value, and () '' the

corresponding value for fluctuations. () can be further defined as

A(xl, t) = (xL, t, v)gA(v)dv (A-7)

The function g_ (v) is the density weighted probability density

function of A. It is also clear that

gA(v)dv = i (A-8)

There are some close relations between conventional mean values

and density-weighted mean values. Some useful relations are shown as

follows:

A = xl, t) f(v)dv = A v)dv = A (A-9)

--_-- A(X|, t)gA(v)dv = X gA(v)dv = X (A-10)

= A(xi, tlg_(v)dv = A g_(vldv = A (A-Ill

A = A(x t, t)f(v)dv = A v)dv = A (A-12)
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, 1

= A + A" = A + A" _ A" _ 0

,_ pA pA + p'A + pA t + p'A"

P P

'-A+--

O

pA + p'A'
_m

P

(A-13)

(A-14)

(A-15)

The equivalence of density-weighted mean values, and

conventional mean values, shown in the Equation (A-15), is

particularly important. To give an example, the continuity equation

is

8p 8
--+ -- (pu_) = 0

8t 8x=

(A-16)

In density-weighted mean values form the equation becomes

m

Op O
-- + -- (_u_) = 0

8t 8x a

(A-17)

The equivalent conventional mean values form is

m

8p 8

-- + -- (p u= + p'u_') - 0

8t 8x=

(A-18)

This means that the Favre-averaging continuity equation is simpler in

form because it contains no terms involving density fluctuations.

In general, density weighted mean values apply velocity

components (u=), temperature (Ti, mass fraction (Y,) and enthalpy

(h), while the conventional mean values are kept for pressure (P) and

density (p).

53


